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SUMMARY

The dissipative particle dynamics mesoscopic simulation method is analyzed thoroughly by identifying the
scaling factors necessary to simulate a multicomponent system. A new framework of general expressions
is derived relating the parameters in the system to their dimensionless quantities. The consistent non-
dimensionalization used in this paper serves to connect the previous models in the literature. When the
scaling factors are based on the solvent in a multicomponent system, the system of equations reduces to
the well-known Groot and Warren model. Validation results for ideal, simple and binary immiscible fluids
are presented and compared with established results from the literature. The framework established herein
is an important step toward the practical application of dissipative particle dynamics for the analysis of
complex fluid systems. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Complex fluids are examples of soft condensed matter systems that are ubiquitous in nature [1].
Paints, emulsions, gels, sols, polymeric liquids, liquid crystals, lubricants, foods and common
fluids such as blood and tap water are complex fluids. A complex fluid is defined as a fluid with
suspended particles, droplets, bubbles, micelles or vesicles, whose characteristic size is in the
mesoscopic domain, i.e. a few nanometers to a few microns [2]. The mesoscopic structure of the
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fluid leads to unusual static and dynamic properties observed at the macroscale. For example, the
macroscale mechanical properties of complex fluids are intermediate between classical solids and
liquids [3].

Most methods for understanding the physical properties and calculating the dynamic response
are based on incorporating non-Newtonian behavior in the continuum Navier–Stokes equations
of fluid mechanics [4, 5]. These methods have shown very good agreement with experiments for
simple colloidal Brownian suspensions, where particle sizes are much bigger than the corresponding
solvent and the effect of the solvent can be averaged out. For systems with smaller particle sizes,
however, this averaging is not applicable and the microstructure can have a significant effect on
the dynamic response. Important contributions to the dynamic response come not only from the
hydrodynamic description of the system but also from the thermal fluctuations at mesoscopic
scales, which affect the macroscopic equilibrium and non-equilibrium transport properties of the
system. Continuum methods are inadequate in this regard and hence there is a need to develop
models that are more fundamental in nature.

The most fundamental method that models fluids from a microscopic, deterministic perspective is
molecular dynamics (MD) [6, 7], which tracks individual atomic motion to calculate fluid properties
and behavior. Any system that needs to be modeled from an atomistic or molecular point of view
with thermal fluctuations could in principle be modeled with MD. The time and length scales that
can be probed with MD have limits in the nanoscopic domain and need very large system sizes and
long runs to reach the hydrodynamic regime. This requires tremendous computing power, which is
often not readily available. In addition, mesoscale length and time scales cannot be probed easily
with MD.

Over the years there has been much interest in developing methods that model fluid systems at
the mesoscale level. In mesoscopic systems, the fastest atomistic length and time scales commonly
treated by methods such as MD are coarse grained in order to be able to treat the larger length and
time scales of interest in these systems. Some of these methods include Brownian dynamics (BD)
[8], dissipative particle dynamics (DPD) [9], Stokesian dynamics [10], smoothed DPD [11], lattice
Boltzmann [12] and lattice gas automata [13]. Particle-based methods are simple to implement
and do not suffer from problems associated with grids or lattices. Boundary conditions are also
easier to apply and a wide variety of fluids and mixtures can be modeled as long as inter- and
intra-particle interactions are known [14].

DPD is a meshless, coarse-grained, particle-based simulation method used to simulate systems
at mesoscopic length and time scales. It can be thought of as a coarse-grained version of MD
with soft inter-particle forces between groups of molecules called beads. The DPD method has
shown tremendous potential for modeling systems where hydrodynamic forces are important. In
addition to the soft interactions, dissipative and random forces are added, which together act
as a thermostat and keep the system in equilibrium. This makes DPD a very attractive scheme
as it models the solvent explicitly and includes the hydrodynamic interactions that are absent
from BD simulations. The method also conserves both linear and angular momentum as all
the interaction forces are pairwise in nature and act between molecular centers. The factor of
1000 time step increase and the factor of 10–100 size scale increase [15] over MD enable the
treatment of realistic systems at length scales up to tens of microns and time scales up to hundreds
of microseconds on a single processor. The model is isotropic, Galilean invariant and can be
interpreted as a Lagrangian discretization to the equations of fluctuating hydrodynamics as the
particles flow and exhibit thermal fluctuations. It has been used to model Couette flow through a
square array of cylinders [9], lipid bilayer membranes [16–18], vesicles [19], mesophage formation
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and behavior [20], polymersomes [21], binary immiscible fluids [15, 22], colloidal suspensions
[23], nanotube–polymer composites [24] and polymer solutions [25].

Despite the fact that significant progress has been made in applying DPD to model single
and multicomponent systems, a consistent, general framework has not been established. The
previous models only work for parameter choices based on water as a solvent. Additionally, all
the DPD beads have traditionally been assumed to have equal volumes with three water molecules
assigned per bead. This restricts the usefulness of DPD in representing multicomponent complex
structures where the bead sizes could vary over the different components or where the solvent
is no longer water-based. Hence, developing a framework with no such restrictions is necessary
to enable exploration of a large variety of systems. In this paper, we tackle this issue by writing
dimensional equations of motion that can be used for any multicomponent DPD model. We then
nondimensionalize these equations and explicitly define scaling factors that are consistent with
standard DPD practice. When the scaling factors are based on the solvent in a multicomponent
system, the multicomponent equations derived herein reduce to the Groot/Warren equations used
most often in the literature. Validation results for ideal, simple and binary immiscible DPD fluids
are then presented and compared with published results.

2. GENERAL DPD EQUATIONS

A complex fluid has many degrees of freedom when viewed from a microscopic (atomistic)
perspective. Coarse-graining reduces the number of degrees of freedom by eliminating ‘irrelevant’
variables—variables not required for the accurate calculation of macroscopic physical properties
of the system. The state of the system at the coarse-grained level is then described by a smaller
set of ‘relevant’ variables. In this way coarse-graining should be done so that the faster degrees of
freedom are removed in favor of the slowly varying ones. Of all the possible levels of description
of a system, two of them have been very well studied: (1) microscopic and (2) macroscopic or
thermodynamic [26]. The microscopic level is governed by the classical Newtonian or Hamiltonian
equations of motion. The macroscopic level is governed by the laws of equilibrium thermodynamics.
Levels in between are governed by kinetic equations that follow after the elimination of variables.
Microscopically, the state of a system is described by the positions and momenta of the individual
atoms. If the atoms are grouped together in clusters so that the motion of the center of mass
of clusters is tracked by the position and momentum variables {r,p}, then the dynamics of this
mesoscale level of description is described by a set of evolution equations for {r,p}. If the time
scales at which the system evolves microscopically are clearly separable from the time scales
at which the variables {r,p} of the mesoscale evolve, the evolution equations of the coarse-
grained level are Markovian, i.e. the history of the system is not important to determine the
future state. In addition, since some variables have been eliminated at the coarse-grained level,
information regarding the initial microstate is missing. Many microstates could possibly give the
same ‘mesostate’. This uncertainty in the initial state creates an uncertainty in the evolution of the
coarse-grained state. This leads to a stochastic description of the system and the problem can be
mapped to a set of stochastic differential equations. Hence, all mesoscopic methods are based on a
statistical description of the distribution of random variables. In the case described above, {r,p} are
the random variables that govern the mesoscopic dynamics. The evolution equations for {r,p} are
of the Langevin type with drift and diffusion terms [27]. Equivalently, the probability distribution
function of these random variables can also be used to describe the system and the corresponding
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equations would be of the Fokker–Planck type, which are mathematically equivalent to a set of
stochastic differential equations.

The DPD equations of motion are stochastic ordinary differential equations of the Langevin
type. In this paper the mesoscopic clusters of atoms, molecules or monomers that are modeled
with DPD forces will be called beads and the individual atoms/molecules/monomers that make
up the bead will be referred to as particles. Hence, a mesoscopic DPD bead is made up of many
microscopic particles. Given a set of beads the state of the mesoscopic system is described by
the bead position and momentum coordinates {r,p}. The position and momentum coordinates are
treated as random variables at this level of description of the system. The time scale of evolution
of these variables is clearly separated from the fast molecular vibrations of the atomic bonds,
which makes the description Markovian. If X represents a random variable that evolves from a
time t to a time t+dt , then continuous time Markovian processes evolve with the following type
of Langevin equation [28]:

X (t+dt)= X (t)+A(X (t), t)dt+[D(X (t), t)]1/2 dt1/2N (0,1) (1)

where A(X (t), t) is the drift term, D(X (t), t) where D�0 is the diffusion term and N (0,1) is
a normal random variable with zero mean and unit variance. Equation (1) indicates that any
continuous Markov process could be expressed as a linear combination of normal random variables.
If the variables A(X (t), t) and D(X (t), t) are constant, then Equation (1) reduces to a completely
homogeneous Markov process known as the Weiner process W . The Weiner process is frequently
used to model diffusive behavior in physical systems:

X (t+dt)= X (t)+Adt+D1/2 dW (2)

dW =N (0,dt)=N (0,1)dt1/2 (3)

The transformation to a unit normal random variable in Equation (3) can be derived in a simple way
using concepts of probability theory [29]. In the case of DPD, the momenta p of the beads have
the same form as Equation (2). The positions are updated from these momenta. The momentum
variables are propagated based on forces that are generally divided into three kinds: conservative,
dissipative and random. The dissipative forces are related to the drift term A in Equation (2) and the
random forces are related to the diffusive forces modeled by the Weiner process. The dissipative
and random forces are consequences of the degrees of freedom ‘lost’ or coarse-grained during the
averaging process and lead to fluctuations of the bead velocity, which can be intuitively understood
to arise from the fact that there can be particle exchange between beads (keeping the total number
of particles constant). The dissipative forces in the system spread the energy of the system and help
in lowering the temperature of the system. The random forces tend to heat the system and in tandem
with the dissipation maintain the temperature of the system. Hence, the DPD algorithm provides
a natural thermostat. It has been shown theoretically [30–32] that the equilibrium probability
distribution of the evolution of the position and momentum variables is Gaussian for continuous
time DPD, which means that the temperature of the system will remain constant in the theoretical
limit of zero time step. However, for the finite time version, the temperature of the system is a
function of the time step due to discretization errors, where the random and dissipative forces
are assumed to be constant over the time step. The conservative forces between beads model the
chemistry and represent the pressure forces in the system.

Let us consider a system of N beads in a simulation box of volume �. Let N� denote the
number of beads corresponding to the component � in the system. By component we mean a type
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of species in the multicomponent system, for example, oil in a water–oil system. Each bead of the
component has a volume �� and has a mass m�. The coarse-graining determines the number of
particles Nm

� in each bead:

m� =Nm
� ·mparticle

� (4)

�� =Nm
� ·�particle

� (5)

mparticle
� and �particle

� are the mass and volume, respectively, of the particles that make up the DPD
bead. The dimensionless number density �̄� is defined as the number of beads that can fill a cubic
box of side length rc�,�:

[rc�,�]3= �̄��� (6)

rc�,� represents the cut-off radius: the distance beyond which the DPD beads of component � do
not interact. A good definition for inter-component cut-off radius r c�,�, where � represents another
component in the fluid, is not available. However, to make the simulations simpler, we make the
assumption that rc�,� is given by the arithmetic mean of rc�,� and rc�,�.

In case of a multicomponent system, the total number of beads and the total volume of the
system are given as

N =∑
�
N� (7)

�=∑
�

�� (8)

The volume �� of component � is given by the product of the number of beads N� and the volume
of each bead ��. Hence, Equation (8) for the total volume of the system becomes

�=∑
�
N��� (9)

Equation (6) can be used to calculate the simulation box volume:

�=∑
�
N�

[rc�,�]3
�̄�

(10)

The equations of motion for the i th bead of component � with position coordinates ri� and
velocity vector vi� can be expressed as

d

dt
[ri�]=vi� (11)

m�
d

dt
[vi�]=FC

i�+FD
i�+FR

i� (12)

where FC
i�, F

D
i� and FR

i� are the conservative, dissipative and random forces acting on the i th bead
of component �. Following Coveney and Español [33] the forces can be defined in the following
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manner:

FC
i� =∑

�

N�∑
j��=i�

fCi�, j� (13)

fCi�, j� =a�,� wC
i�, j�(ri�, j�)r̂i�, j� (14)

FD
i� =−∑

�

N�∑
j��=i�

fDi�, j� (15)

fDi�, j� =��,�w
D
i�, j�(ri�, j�) [vi�, j� · r̂i�, j�] r̂i�, j� (16)

FR
i� =∑

�

N�∑
j��=i�

fRi�, j� (17)

fRi�, j� =��,�w
R
i�, j�(ri�, j�)�i�, j� r̂i�, j� (18)

In Equations (13), (15) and (17), the index � runs over all components and a�,�, ��,�, ��,� are the
conservative, dissipative and random force parameters between beads iand jof components � and �,
respectively. The conservative parameter a�,� has units of force, the dissipative parameter ��,� has
units of force per unit velocity and the random noise parameter ��,� has units of force∗(time)1/2.
wi�, j� is an arbitrary weight function that vanishes at ri�, j� =rc�,�. The position, dimensionless
position and relative velocity vectors between beads i� and j� are defined as

ri�, j� =ri�−r j� (19)

r̂i�, j� = ri�, j�

ri�, j�
(20)

vi�, j� =vi�−v j� (21)

and the magnitude of the position vector is given as

ri�, j� =|ri�, j�| (22)

The conservative and random weight functions in Equations (14) and (18) are of a form used
previously [34]

wi�, j�(ri�, j�)=

⎧⎪⎨
⎪⎩
1− ri�, j�

rc�,�
, ri�, j��rc�,�

0, ri�, j�>rc�,�

(23)

which gives the beads a soft repulsive character. The dissipative weight function is defined later
in Equation (30).

The random force term in Equation (18) is governed by the randomly fluctuating quantity �i�, j�,
which obeys Gaussian statistics due to its Markovian character. �i�, j� is generally taken to be
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a delta correlated distribution with zero mean

〈�i�, j�(t)〉=0 (24)

delta variance

〈�i�, j�(t)�k�,l�(t
′)〉=〈�i�,k�(t)� j�,l�(t)+�i�,l�(t)� j�,k�(t)〉�(t− t ′) (25)

and symmetry [30]
�i�, j� =� j�,i� (26)

The symmetry property ensures that the total momentum of the system is conserved. Equation
(25) indicates that at times t= t ′, the random forces between two distinct bead pairs (i�, j�) and
(k�, l�) will be uncorrelated. At all other times, the delta function is identically zero. Equation
(25) is the most general way of defining the delta-correlated random term as it includes the straight
(intra-component) and cross correlation (inter-component) terms between particle pairs.

To implement the random force as given in Equation (18) numerically, the properties of the
random variable �i�, j� have to be known. Groot/Warren [34] and Español/Warren [30] have shown
that the noise term �i�, j� can be interpreted as the time derivative of the Weiner process, which
from Equation (3) is just a normal random variable of order dt1/2:

�i�, j� = dW

dt
= N (0,1)dt1/2

dt
=N (0,1)dt−1/2 (27)

For computer simulations, the normal random variable N (0,1) becomes a normal random number
	i�, j� with zero mean and unit variance and is chosen independently for every pair of interacting
beads in the system. Substituting Equation (27), Equation (18) becomes

fRi�, j� =��,�w
R
i�, j�(ri�, j�)	i�, j� dt

−1/2 r̂i�, j� (28)

All the forces are pairwise in nature and hence help conserve linear and angular momentum. Any
additional forces in the system such as spring or bond angle forces can be added to the beads to
simulate a solid-like or soft-particle system [35].

In order to make the stochastic differential equations in (11) and (12) work for a given system at
thermal equilibrium, the fluctuation–dissipation (FD) theorem and the detailed balance conditions
have to be satisfied. These conditions ensure that the system Hamiltonian has a Gibbsian canonical
equilibrium distribution. Español/Warren [30] derived the conditions for the Gibbsian equilibrium
from the equivalent Fokker–Planck equation. Later Marsh et al. [31] confirmed that this is indeed
the case and if the detailed balance is not satisfied, then the Gibbs state is not a stationary state
of the system and thermal equilibrium can never be obtained. This constant temperature version
of DPD does not have a corresponding energy equation and hence energy is not conserved in the
system. In accordance with the above considerations, the following conditions need to be satisfied
for the multicomponent constant temperature version of DPD [33]:

�2�,� =2��,�kBT (29)

wD
i�, j�(ri�, j�)=[wR

i�, j�(ri�, j�)]2 (30)
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3. DIMENSIONLESS DPD EQUATIONS

In DPD, the governing equations are typically expressed in dimensionless form. To relate DPD
simulation results to real physical quantities, scaling factors linking dimensional and dimensionless
quantities must be identified. Although scale factors for quantities such as mass, length, and thermal
energy have been defined previously [34], scale factors for other quantities have not been explicitly
defined. This makes it unclear as to how to compute dimensional physical properties in DPD. Here
we find explicit definitions for the unknown scale factors following a two step process. First, in
this section, we nondimensionalize the DPD expressions from Section 2 using general scale factors
(denoted with asterisks) that have not yet been defined in terms of the known parameters of the
system. Then in Section 4 we compare the resultant equations to standard DPD equations in the
literature to explicitly define scaling factors that are consistent with standard DPD practice.

Nondimensionalization by scaling factors is often used to reduce the number of independent
parameters in the governing equations and thus simplify their solution. In fluid mechanics, for
example, nondimensionalization of the variables of the problem leads to dimensionless equations
of motion and well known dimensionless groupings of parameters such as the Reynolds number.
In contrast, the dimensionless equations of DPD have the same number of parameters as the
dimensional equations of motion. Reduction in the number of parameters does not occur in DPD for
two reasons. First, according to DPD convention, all parameters, including variables and material
parameters, are scaled. In fluid mechanics, material parameters such as density and viscosity are not
typically scaled. Additionally, the conventional DPD scaling is such that the dimensionless values of
several material parameters are not equal to one. For example, the dimensionless conservative and
random force parameters commonly assume the values 25 (assuming one water molecule per bead)
and 3, respectively, for water at room temperature [34]. Hence, dimensionless material parameters
appear individually in the nondimensional DPD equations, in contrast to fluid mechanics where
dimensional parameters are grouped into dimensionless quantities. The lack of grouping in DPD
is why there is no reduction in the number of parameters.

Proper definition of scaling factors depends on the dominant physics of each particular system
and can vary depending on the type of problem. In fluid mechanics, the appropriate pressure scaling
is different for high and low speed flows, depending on dynamic pressure and viscous stress,
respectively [36]. As the appropriate scale factors are not necessarily the same or known a priori

Table I. Dimensionless quantities and scaling factors
for parameters used in the DPD system.

Length r̄=r/r∗
Velocity v̄=v/v∗
Time t̄= t/t∗
Mass m̄=m/m∗
Force F̄=F/F∗
Conservative force parameter ā=a/a∗
Dissipative force parameter �̄=�/�∗
Random force parameter �̄=�/�∗
Thermal energy∗ kBT =kBT /[kBT ]∗
System volume �̄=�/�∗

∗Note that the same definition applies to temperature as kB is a
constant.
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for every DPD problem, we follow Munson et al. [37] and nondimensionalize the governing
equations using general scaling factors (denoted with asterisks) that have not yet been defined in
terms of the known parameters of the system. In Section 4 we explicitly define the scaling factors.
These scaling factors are the DPD units that are used in the simulations. For example, length is
measured in units of r∗, velocity in units of v∗ and time in units of t∗. The resultant dimensionless
parameters are denoted with an overbar as shown in Table I.

With the above definitions for dimensionless quantities, the system volume in Equation (10)
reduces to the following dimensionless expression:

�̄=
[ [r∗]3

�∗
][∑

�
N�

[r̄c�,�]3
�̄�

]
(31)

On replacing the dimensional variables in Equations (11) and (12) with the dimensionless variables
defined in Table I, the equations of motion for the i th particle of component � transform as

d

dt̄
[r̄i�]=

[
v∗t∗

r∗

]
v̄i� (32)

m̄�
d

dt̄
[v̄i�]=

[
F∗t∗

m∗v∗

]
[F̄C

i�+F̄D
i�+F̄R

i�] (33)

The weight function used most commonly for soft repulsive forces is dimensionless and has the
same form as Equation (23):

w̄i�, j�(r̄i�, j�)=

⎧⎪⎪⎨
⎪⎪⎩
1− r̄i�, j�

r̄c�,�
, r̄i�, j��r̄c�,�

0, r̄i�, j�>r̄c�,�

(34)

Similarly, the dimensionless counterparts of Equations (13)–(17) and (28)–(30) are

F̄C
i� =∑

�

N�∑
j��=i�

f̄Ci�, j� (35)

f̄Ci�, j� =
[
a∗

F∗

]
ā�,�w̄

C
i�, j�(r̄i�, j�) ˆ̄ri�, j� (36)

F̄D
i� =−∑

�

N�∑
j��=i�

f̄Di�, j� (37)

f̄Di�, j� =
[
�∗v∗

F∗

]
�̄�,�w̄

D
i�, j�(r̄i�, j�) [v̄i�, j� · ˆ̄ri�, j�]ˆ̄ri�, j� (38)

F̄R
i� =∑

�

N�∑
j��=i�

f̄Ri�, j� (39)

f̄Ri�, j� =
[

�∗

F∗[t∗]1/2
]
�̄�,�w̄

R
i�, j�(r̄i�, j�)	̄i�, j� dt̄

−1/2 ˆ̄ri�, j� (40)
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�̄2�,� =
[
�∗[kBT ]∗

[�∗]2
]
2 �̄�,� kBT (41)

w̄D
i�, j�(r̄i�, j�)=[w̄R

i�, j�(r̄i�, j�)]2 (42)

The equations of motion (32) and (33) define an initial value problem and can be solved with
two initial conditions. The initial positions and initial velocities are specified and the equations
propagated in time using special integrators. The initial velocity is set using the equipartition
theorem to set the thermal energy kBT :

1

2

∑
i
m̄�v̄2i� = 3

2

[ [kBT ]∗
m∗[v∗]2

]
N�kBT (43)

The kinetic temperature of the system can be calculated at any point in the simulation by inverting
the expression in Equation (43).

4. EXPLICIT DEFINITION OF SCALING FACTORS FOR MULTICOMPONENT
DPD EQUATIONS

The model of Groot/Warren explicitly defined scaling factors for mass, length, and thermal energy
but did not do so for several other important quantities in Table I. In this section we explicitly
define the remaining scaling factors in a manner consistent with this model. This is done by first
recalling the velocity and time scaling factors of Ripoll et al. [38] and then by comparing the
dimensionless equations of Section 3 to the Groot/Warren model. It is shown that the square
bracketed prefactor groupings of general scaling factors in Equations (31)–(33), (36), (38), (40),
(41), and (43) must reduce to one to recover the Groot/Warren model. The scaling factors are
generalized to multicomponent systems and are based on the solvent, which has faster time scales
compared with the suspended particles or monomers in such systems. The solvent component is
denoted by the subscript (1) and solvent–solvent interactions are denoted by the subscript (1,1).

Following Groot/Warren, the scaling factor for mass is the mass of the solvent

m∗ =m(1) (44)

the scaling factor for length is the cut-off distance for the solvent–solvent interaction

r∗ =rc(1,1) (45)

and the thermal energy scale is the thermal energy of the solvent

[kBT ]∗ =[kBT ] (46)

Following Ripoll et al. [38], the thermal velocity of the solvent particle is chosen as the velocity
scale

v∗ =
√

[kBT ]
m(1)

(47)
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and the time scale is set as the traversal time. This time, which is defined as a ratio of the solvent–
solvent cut-off distance of the bead to the thermal velocity, represents the interaction time between
DPD beads:

t∗ = r∗

v∗ =
√
m(1)[rc(1,1)]2

[kBT ] (48)

Although the thermal energy of the solvent is used as the scale for kBT , since constant temperature
is assumed in this model, it will make no difference to choose another temperature scale as kB is
a constant.

With these choices of scaling factors, the factor v∗t∗/r∗ in Equation (32) becomes identically
equal to one. It should be noted that since Equations (32) and (33) are dimensionless, the groups of
parameters that are formed in the process of non-dimensionalization have also to be dimensionless.
Hence, the group F∗t∗/m∗v∗ in Equation (33) has to be dimensionless, and F∗ must have the
same dimensions as m∗v∗/t∗. Assuming this group equals one

F∗ = [kBT ]
rc(1,1)

(49)

Similarly, identifying the dimensionless groups for a∗, �∗ and �∗ in Equations (36), (38) and (40)
and making the assumption that they are equal to one give the following factors:

a∗ =F∗ = [kBT ]
rc(1,1)

(50)

�∗ =
√
m(1)[kBT ]
rc(1,1)

(51)

�∗ = [m(1)]1/4[kBT ]3/4
[rc(1,1)]1/2

(52)

Equation (50) was also given by Maiti and McGrother [35] in a separate study. The factors �∗ and
�∗ in Equations (51) and (52), respectively, reduce the FD relation in Equation (41) by making the
group [�∗[kBT ]∗/[�∗]2] equal to one. The system volume is non-dimensionalized by the scaling
factor for length, i.e. �∗ =[r∗]3. Using the scaling parameter definitions from Equations (44)–(48),
the force expressions in Equations (35)–(40) reduce to

F̄C
i� =∑

�

N�∑
j��=i�

f̄Ci�, j� (53)

f̄Ci�, j� = ā�,�w̄
C
i�, j�(r̄i�, j�) ˆ̄ri�, j� (54)

F̄D
i� =−∑

�

N�∑
j��=i�

f̄Di�, j� (55)
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f̄Di�, j� = �̄�,�w̄
D
i�, j�(r̄i�, j�)[v̄i�, j� · ˆ̄ri�, j�]ˆ̄ri�, j� (56)

F̄R
i� =∑

�

N�∑
j��=i�

f̄Ri�, j� (57)

f̄Ri�, j� = �̄�,�w̄
R
i�, j�(r̄i�, j�)	̄i�, j� dt̄

−1/2 ˆ̄ri�, j� (58)

where the general character of the equations in terms of components � and � is retained. With the
above assumptions for scale factors, the expressions in Equations (53)–(58) reduce to Equations
(3)–(4) given by Groot/Warren [34].

5. CHOICE OF PARAMETERS IN DPD

The main parameters in the dimensionless DPD equations are ā�,�, �̄�,�, �̄�,�, kBT and �t̄ , which
have to be specified for the system. With the scaling factors defined in Section 4, the FD expression
of Equation (41) reduces to

�̄2�,� =2 �̄�,�kBT (59)

This expression relates three of the above parameters and hence only two need to be specified to
calculate the third.

5.1. Conservative force parameter

In the original Groot/Warren model, the conservative force parameter for the solvent was set by
matching the isothermal compressibility of the DPD solvent with that of water at 300K. The
inverse dimensionless isothermal compressibility 
−1

(1) of the solvent DPD beads is defined as

1

[kBT ]
[
�p
�n

]
(1)

=
−1
(1) (60)

where n is the number of solvent particles in the volume � or n=Nm
(1)N(1)/�(1) =Nm

(1)�̄(1)/[rc(1,1)]3
using Equation (31) for a single component. Using the scaling p∗ =kBT/[rc(1,1)]3=F∗/[rc(1,1)]2
and the definition of n from above, Equation (60) can be expressed in terms of dimensionless
parameters as [

� p̄
��̄

]
(1)

=Nm
(1)


−1
(1) (61)

For water at 300K, Keaveny et al. calculated 
−1
(1) =15.9835 using MD simulations [39], which

has also been reported by Groot/Warren [34] and Maiti and McGrother [35].
Groot/Warren and Maiti and McGrother obtained a simplified expression for the dimensionless

pressure of a single component system:

p̄(1) = �̄(1)+cā(1,1)�̄
2
(1) (62)
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where all the beads in the single component system have the same conservative force parameter,
which is denoted by a constant value of ā(1,1). The value of c was calculated to be 0.101±0.001 to
a good approximation for �̄(1) >2 [34]. Using this equation for pressure, the inverse dimensionless
isothermal compressibility of the DPD solvent in Equation (61) is matched with the value obtained
numerically using MD to obtain the following expression for the intra-component conservative
force parameter:

ā(1,1) =
[Nm

(1)

−1
(1)]−1

2c�̄(1)
(63)

Maiti and McGrother have shown that the conservative force parameter for other components can
be set by condition of mechanical equilibrium at the interface, i.e. the pressure in each component
must be equal: p� = p(1). Since the form of the conservative force is soft repulsive, systems with
finite surface tension between liquid and vapor phases, which need long-range attractive forces,
cannot be modeled [34]. The equal pressure constraint leads to the following condition for the
conservative intra-component parameter:

�̄(1)

[rc(1,1)]3
− �̄�

[rc(�,�)]3
=c

[
ā(�,�)

�̄2�
[rc(�,�)]3

− ā(1,1)
�̄2(1)

[rc(1,1)]3
]

(64)

In the case of polymer systems, the conservative inter-component parameter between the solvent
and phase �: ā(1),� is set based on the miscibility of the components. The free energy density in these
systems is matched with the Flory–Huggins mean-field theory [40] to calculate the inter-component
conservative force parameter from the � parameter of polymer dynamics. The � parameter controls
whether the system will be well segregated or well mixed. In the case of a binary fluid system,
the conservative force parameter can also be set based on a solubility parameter that is related
to the Flory–Huggins � parameter. The intra-component interactions in the Groot/Warren model
were chosen to be the same for the solvent and phase �: ā(1,1) = ā(�,�). This follows from Equation
(64) provided that the bead volumes �(1) = �̄(1)/[rc(1,1)]3, �� = �̄�/[rc(�,�)]3 and the dimensionless
densities �̄(1), �̄� are assumed equal. This is consistent with the Flory–Huggins theory, which
assumes that all the beads have to be of the same equilibrium volume. For this reason, the inter-
component parameter ā(1),� alone decides the chemistry of the system.

5.2. Dissipative and random force parameters

Unlike BD where the friction in the system is set based on the drag force experienced by the body,
the friction parameter in DPD is heuristic in nature. In the original formulation by Groot/Warren,
the dissipative and random force parameters were set empirically as a compromise between fast
temperature equilibration, a fast simulation and acceptable numerical stability based on the velocity
Verlet algorithm. The dissipative and random force parameters are also related via the FD theorem
to the temperature of the system. A higher dissipation parameter in the system yields faster cooling,
but can introduce numerical stability issues in the Groot/Warren algorithm. In this algorithm, the
force evaluation is done only once per time step. This is insufficient if the friction parameter is
set too high, as the dissipative and random forces will not be able to respond quickly enough
to control the temperature. Groot/Warren recommend a dissipative parameter �̄(1,1) =4.5 and a
random parameter �̄(1,1) =3.0 for a set temperature kBT =1.0. Masters and Warren [41] who used
Boltzmann pair collision theory to investigate the change in scaling behavior of viscosity, found
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that for �̄(1,1)�5 the velocity autocorrelation function deviates from the single exponential behavior
and correlation effects start to take over early in the simulation. Visser et al. [42] suggest setting
the intra-component friction based on the viscosity of the component and the inter-component
friction based on lever rules. However, the application of this idea to real systems has yet to be
investigated.

Table II. Values of DPD parameters and estimate of time scales in a
typical single component simple fluid system based on water.

Number of molecules per bead: Nm
(1) 3

Dimensionless density: �̄(1) 3

Mass of molecule: mparticle
(1) 18amu

Mass of bead: m(1) (Equation (4)) 54amu

Volume of molecule: �particle
(1) 30Å3

Volume of bead: �(1) (Equation (5)) 90Å3

Cut-off radius: rc
(1,1) (Equation (6)) 6.463Å

Temperature: T 300K
Thermal velocity of bead: v(1) (Equation (47)) 2.149Å/ps
Dimensionless friction parameter∗: �̄(1,1) 4.5
Dimensionless noise parameter∗: �̄(1,1) 3.0
Dimensionless conservative force parameter†: ā(1,1) 78.0
Scaling factor for friction parameter: �∗ (Equation (51)) 18amu/ps
Scaling factor for noise parameter: �∗ (Equation (52)) 6.69×10−8 amu.Å/ps3/2

Traversal time scale: t∗ (Equation (48)) 3.01ps

∗Groot/Warren [34].
†Groot and Rabone [16].

Table III. Ideal and simple fluid simulation parameters in DPD units.

Property Ideal fluid Simple fluid

N 3000 3000

m
particle
(1) 18amu 18amu

�particle
(1) 30Å3 30Å3

Nm
(1) 3 3

m̄(1) 1.0 1.0
�̄(1) 3 3
�̄(1) 10×10×10 10×10×10
r̄c
(1,1) 1.0 1.0
ā(1,1) 0.0 78.0
�̄(1,1) 4.5 4.5
�̄(1,1) 3.0 3.0
kBT 1.0 1.0
� 0.65 0.65
�t̄ 0.001–0.1 0.001–0.1
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5.3. System temperature

The system temperature is measured in dimensionless units of [kBT ]∗, the thermodynamic temper-
ature. This temperature must in general be the same as the kinetic temperature that is obtained
by inverting the expression in Equation (43) as isothermal DPD models systems at canonical
equilibrium. In this case, the average dimensionless temperature kBT must be the same for all
components. This gives a new condition from the FD theorem in (59) that must be satisfied by all
beads in the system for components � and �:

�̄2�,�

�̄�,�
=

�̄2�,�

�̄�,�
=

�̄2�,�

�̄�,�
(65)

5.4. Time step

For physically meaningful simulations, the DPD time step �t̄ must be chosen smaller than the
shortest characteristic time scales of the system. These time scales, discussed in detail by Ripoll
et al. [38], are influenced by many factors including the thermal energy kBT and the coarse-graining
factor Nm . For example, Equations (4) and (5) show that an increase in Nm will cause increase in
bead mass and bead volume. These changes decrease the diffusion constant and increase the time
scales in the DPD system. Pivkin and Karniadakis [43] show that there are limits to the maximum
value that Nm can take in both open and wall-bounded systems. Increase in coarse-graining beyond
a critical value causes the DPD fluid to solidify, thereby changing the character of the solvent. In
order to identify the appropriate DPD time step values to use with our multicomponent formulation,
we investigate the effect of time step on the average system temperature for ideal, simple and
binary fluid systems. This is done using the parameters in Tables II and III, which are based
on a solvent of water at 300K. Physically meaningful time steps are those that give calculated
temperatures close to the ‘set’ temperature imposed on the system. These and other validation
calculations are discussed in Section 6.

6. VALIDATION RESULTS AND DISCUSSION

The stochastic differential equations (32) and (33) can be integrated using various integration
algorithms. In this paper we use the Groot/Warren [34] and self-consistent velocity Verlet [44]
integrators to show the effect of time step on the temperature and radial distribution function
(RDF). These results help to validate the simplified version of the multicomponent framework
against existing results from the literature.

6.1. Temperature variation with time step

6.1.1. Ideal fluid. An ideal fluid system is one in which the conservative forces FC are absent.
Although this system has no direct counterpart in real physical systems, it is useful for comparing
with statistical mechanical theories and for understanding and benchmarking the effects of the
dissipative and random forces on the system properties. Simulations on an ideal fluid system were
performed for the set of parameters defined in Table III with periodic boundary conditions. The
parameter � in the table is the intermediate time step parameter used in the Groot/Warren integrator.
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The kinetic temperature of the system was calculated from the velocities using Equation (43)
at every time step. The time-averaged temperature variation with time step is shown in Figure 1
for the Groot/Warren and self-consistent schemes for �t̄ ranging from 0.001 to 0.1. At time steps
less than 0.03 for the Groot/Warren integrator, the variation of actual kinetic temperature from
the desired ‘set’ temperature kBT =1 is less than 1%. For time steps 0.04 and 0.05, which have
been used by Groot/Warren earlier, the variation is between 1 and 2%. The variation in the case
of the self-consistent algorithm is roughly 3% at time steps greater than 0.05. In general, there is
a positive drift with time step for the Groot/Warren integrator and a negative drift with time step
for the self-consistent integrator. The trends and results match very well with simulations done
by Groot/Warren and also by Vattulainen et al. [44]. For time steps greater than 0.5 (not shown),
the Groot/Warren integration algorithm becomes highly unstable and the temperature reaches very
high values. Error bars were calculated from the error of the mean (the ratio of standard deviation
to the square root of number of time steps at which data is stored) and are so small as to be
obscured by the points.

6.1.2. Simple fluid. A simple fluid system is one in which the conservative forces are included along
with dissipative and random forces. The effect of the conservative force is to induce short-range
repulsion in the system and hence it gives a non-zero pressure. The conservative force parameter
for this system is set to ā(1,1) =78.0 following Groot and Rabone [16]. All other parameters are
the same as that of the ideal fluid shown in Table III. The time-averaged temperature variation
with time step is shown in Figure 2 for the Groot/Warren and self-consistent schemes.

The Groot/Warren algorithm shows an irregular variation in temperature with time step in the
simple fluid case as compared with the ideal fluid, where it gradually increases. The self-consistent
algorithm shows very steady temperatures with time step, although the temperature is about 2%
lower than the desired value. For time steps of order 0.1 or greater (not shown) in the Groot/Warren

Figure 1. Variation of time-averaged dimensionless temperature with time step for ideal fluid system.
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Figure 2. Variation of time-averaged dimensionless temperature with time step for the simple fluid system.

case, the temperature deviation is about two orders of magnitude. The self-consistent scheme is
stable up to time steps of order 0.1. The error bars are again obscured by the points.

6.1.3. Binary fluid. The simplest extension of the above theory that can be made to a multicompo-
nent system is the binary immiscible fluid. The idea is to check whether the temperature variation
with time step also holds for such systems, as earlier studies on integrators and temperature varia-
tion focused primarily on single component systems. Addition of a second component changes the
time and length scales and the force contributions, which must be accounted for by the integration
algorithm. The system parameters chosen for this study are described in Table IV. All scaling
factors in the system are based on the solvent fluid (1).

The choice of the inter-component conservative force parameter ā(1,2) is made so that the fluids
are immiscible. This ensures that the � parameter of the Flory–Huggins system is greater than 1
and that the system will phase segregate. From analysis of the fluid structure (Figures 8–10), the
arbitrarily chosen value ā(1,2) =120 was found suitable to obtain immiscibility. The time-averaged
temperature variation of the whole system with time step is shown in Figure 3 for both the
integrators. The error bars are again obscured by the points. The temperature variation is similar
to the Groot/Warren simple fluid case with both integrators breaking down at time steps of order
0.1 or greater. For the Groot/Warren integrator, the temperature variation for time steps less than
0.05 is within 2% of the desired temperature, whereas for the self-consistent case the variation
is within 4% of the desired temperature. For small time steps of the order of 0.01 or less, the
temperature variation is within 1% of the desired temperature.

6.2. Radial distribution function

The RDF g(r) gives the average density as a function of distance from a given bead. The RDF
is a good measure used to validate simulations by probing the structure of the DPD system and
is calculated using the expression from [6]. From the center of the bead, the space around it is
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Table IV. Binary fluid simulation parameters in DPD units.

Property Solvent fluid (1) Suspended fluid (2)

N 2500 500
mparticle 18amu 12amu
�particle 30Å3 30Å3

Nm 3 3
m̄ 1.0 0.67
�̄ 3.0 3.0
�̄ 10×10×10[
r̄c(1,1) r̄c(1,2)

r̄c(2,1) r̄c(2,2)

] [
1.0 1.0

1.0 1.0

]
[
ā(1,1) ā(1,2)

ā(2,1) ā(2,2)

] [
78.0 120.0

120.0 78.0

]
[
�̄(1,1) �̄(1,2)

�̄(2,1) �̄(2,2)

] [
4.5 4.5

4.5 4.5

]
[
�̄(1,1) �̄(1,2)

�̄(2,1) �̄(2,2)

] [
3.0 3.0

3.0 3.0

]

kBT 1.0
� 0.65
�t̄ 0.001–0.1
Traversal time scale: t∗ (Equation (48)) 3.01 ps (1 DPD unit) 2.46 ps (0.82 DPD units)

Figure 3. Variation of time-averaged dimensionless temperature with time step for binary fluid system.

divided into spherical shells (bins) and the number of beads in each bin is calculated. The ratio of
the average number of beads per bin to the set number density, N/�, gives the RDF as it varies
with distance away from the bead center.
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6.2.1. Ideal fluid. In the case of an ideal fluid, the RDF should be identically equal to one
due to the absence of static correlations in the system. Figures 4 and 5 show the variation of
time-averaged dimensionless RDF with time step (�t̄ ) for the Groot/Warren and self-consistent
integrators, respectively. Both integrators show artificial structure close to the particle, though it is
more pronounced in the Groot/Warren case. The Groot/Warren integration scheme shows more
structure due to the explicit nature of the algorithm. In the self-consistent scheme, the iterative
process stabilizes the temperature that reduces the correlations close to the particle center. Another
reason for the artificial structure is the size of the bins that can lead to numerical errors. These
errors, given by the deviations of the simulation values from the true value of 1, decrease as one
moves away from the bead center as seen in Figures 4 and 5.

6.2.2. Simple fluid. The time-averaged RDF for the simple fluid case is shown in Figure 6 for the
Groot/Warren algorithm and Figure 7 for the self-consistent algorithm. Except for time steps of
0.1, the curves in Figure 6 are indistinguishable. The curve at 0.1 in Figure 6 is similar to that
seen in the case of ideal fluid and indicates that the conservative force integration is not proper. At
time steps of 0.1, the beads move longer distances in one step and hence increase the probability
of inter-bead penetration. The physics of finite conservative force repulsion is not captured by the
Groot/Warren algorithm at this time step. For the other time steps, a fluid-like character is shown
by the distribution function. Close to the particle center the distribution function is zero due to
finite repulsion. The curves in Figures 6 and 7 are only shown up to a distance of 1.0, which is
the cut-off radius in the system. Away from the cut-off radius, the distribution function dips to
the set density in the system, N/� and remains close to that value (one), as expected in a fluid.
It should be noted from Figure 2 that at �t̄=0.1, the temperature of the system is very high for
the Groot/Warren scheme, which supplements the claim that time steps less than 0.1 are required
with this integrator for a reasonable estimate of these properties.

Figure 4. Dimensionless radial distribution function for the ideal fluid using the Groot/Warren integrator.
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Figure 5. Dimensionless radial distribution function for the ideal fluid using the self-consistent integrator.

Figure 6. Dimensionless radial distribution function for the simple fluid using the Groot/Warren integrator.

Figure 7 shows the RDF for the self-consistent case, which suffers from similar problems for
�t̄=0.1. The trends observed at other time steps are very similar to that of the Groot/Warren
case, which indicates that both integrators capture the essential physics very well for these time
steps. Although the temperature conservation is good at a time step of 0.1, the RDF is not good.
Hence, time steps smaller than 0.1 should be used to capture the physics of the system with the
self-consistent integrator and obtain good temperature conservation.
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Figure 7. Dimensionless radial distribution function for the simple fluid using the self-consistent integrator.

Figure 8. Dimensionless radial distribution function for the binary fluid using the Groot/Warren integrator.

6.2.3. Binary fluid. The intra-component RDF for both components of the binary fluid system is
shown in Figures 8 and 9 for the Groot/Warren and self-consistent integrators, respectively. For
the binary system the RDF for component � is found by finding the number of � beads per bin
volume and dividing by the set density of component �, N�/�. The values of N� and � are found
in the first line of Table IV. Both components show fluidic behavior with the characteristic crest
at the location of the first nearest neighbors. The height of the crest in the case of the suspended
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Figure 9. Dimensionless radial distribution function for the binary fluid using the self-consistent integrator.

fluid (2) is larger than that of the solvent fluid (1) because the RDF for (2) is normalized by a
smaller number (N(2)/�) than for (1) (N(1)/�). The RDF for the solvent fluid (1) gradually settles
at the value of one, which is the normalized set density for this fluid. The RDF for the suspended
fluid (2), however, drops below one toward zero at larger values. This behavior arises due to phase
segregation. The inter-bead repulsion between fluids (1) and (2) is very high, pushing the beads of
(2) together and resulting in phase separation (Figure 10). At large enough distances from a given
bead of (2), there will be no other beads of (2) as they are all concentrated into a single droplet
rather than dispersed evenly throughout the system.

Figure 8 shows the RDF in the Groot/Warren case. Except for �t̄=0.1, all curves look similar.
The ideal fluid-like behavior at �t̄=0.1 was also seen earlier in the simple fluid case and is due to
the increase in inter-particle penetration with large time steps. Both fluid component RDFs show
this behavior at �t̄=0.1. Figure 9 shows the RDF in the self-consistent case. Time steps in the
range 0.02–0.04 have been omitted as the behavior is similar to that of the simple fluid case. The
major difference between the Groot/Warren and this case is seen at �t̄=0.001, where the peak
in the RDF for fluid (2) is notably lower than at other time steps. This could be due to errors in
the self-consistent integration algorithm as compared with the Groot/Warren case. The algorithm
breaks down at �t̄=0.1 as the RDF in Figure 9 shows the ideal fluid-like behavior similar to the
Groot/Warren case.

7. CONCLUSIONS

In this paper, a complete multicomponent DPD framework has been presented for the first time.
Initially, the general DPD equations are expressed in dimensional form. General scaling factors
for time, length, velocity and mass are used to convert these equations to dimensionless form.
Next, these scaling factors are explicitly defined in a manner consistent with DPD convention by

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:867–891
DOI: 10.1002/fld



MULTICOMPONENT DISSIPATIVE PARTICLE DYNAMICS 889

Figure 10. Phase segregation in a binary immiscible fluid system. Snapshots from
top to bottom are in order of increasing time.

making use of solvent length and time scales. Explicit definition of these factors makes it possible
to compute real dimensional physical properties with DPD simulations. The validation results for
temperature variation with time step are in good agreement with the time scales of the system and
with previously published results. The choice of the time step is limited by the shortest time scale
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and is based on the dissipative parameter in the system. This limit has been confirmed through
the ideal and simple fluid simulations. The radial distribution function is a good indicator of the
fluid-like behavior in the system and works very well for time steps less than 0.1. For time steps
greater than 0.1 both Groot/Warren and self-consistent integrators break down and the simple
fluid behavior changes to ideal fluid behavior. Simulation results for binary immiscible fluids show
phase segregation as indicated by the radial distribution functions. The framework established here
is an important step toward the practical application of multicomponent DPD for the analysis of
complex fluid systems.

ACKNOWLEDGEMENTS

This work was partially supported by the Nano/Bio Interface Center, an NSF NSEC (DMR-0425780)
and by the Office of Naval Research (grant no. N00014-07-1-0665).

REFERENCES

1. de Gennes PG. Soft matter. Reviews of Modern Physics 1992; 64:645–648.
2. Gelbart WM, Ben-Shaul A. The ‘New’ science of complex fluids. Journal of Physical Chemistry 1996; 100:

13169–13189.
3. Larson RG. The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering). Oxford University

Press: New York, 1999.
4. Crochet MJ, Walters K. Numerical methods in non-Newtonian fluid mechanics. Annual Review of Fluid Mechanics

1983; 15:241–260.
5. Stickel JJ, Powell RL. Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics

2005; 37:129–149.
6. Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford University Press: New York, 1989.
7. Haile JM. Molecular Dynamics Simulation: Elementary Methods. Wiley-Interscience: New York, U.S.A., 1992.
8. Ermak DL, McCammon JA. Brownian dynamics with hydrodynamic interactions. Journal of Chemical Physics

1978; 69:1352–1360.
9. Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle

dynamics. Europhysics Letters 1992; 19:155–160.
10. Brady JF, Bossis G. Stokesian dynamics. Annual Review of Fluid Mechanics 1988; 20:111–157.
11. Español P, Revenga M. Smoothed dissipative particle dynamics. Physical Review E 2003; 67:026705-(1-12).
12. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press: U.S.A.,

2001.
13. Rivet JP, Boon JP. Lattice Gas Hydrodynamics. Cambridge University Press: Cambridge, 2001.
14. Español P, Serrano M, Zuñiga I. Coarse-graining of a fluid and its relation with dissipative particle dynamics

and smoothed particle dynamics. International Journal of Modern Physics C 1997; 8:899–908.
15. Dzwinel W, Yuen DA. Matching macroscopic properties of binary fluids to the interactions of dissipative particle

dynamics. International Journal of Modern Physics C 2000; 11:1–25.
16. Groot RD, Rabone KL. Mesoscopic simulation of cell membrane damage, morphology change and rupture by

nonionic surfactants. Biophysical Journal 2001; 81:725–736.
17. Jakobsen AF, Mouritsen OG, Besold G. Artifacts in dynamical simulations of coarse-grained model lipid bilayers.

Journal of Chemical Physics 2005; 122:204901-(1-11).
18. Sugii T, Takagi S, Matsumoto Y. A meso-scale analysis of lipid bilayers with the dissipative particle dynamics

method: thermally fluctuating interfaces. International Journal for Numerical Methods in Fluids 2007; 54:831–840.
19. Yamamoto S, Maruyama Y, Hyodo S. Dissipative particle dynamics study of spontaneous vesicle formation of

amphiphilic molecules. Journal of Chemical Physics 2002; 116:5842–5849.
20. Gomes AE, Martins AF, Polimeno A. Dissipative particle dynamics approach to mesophase formation and

behavior. Molecular Crystals and Liquid Crystals 2005; 435:135–152.
21. Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J. Dissipative particle dynamics simulations

of polymersomes. Journal of Physical Chemistry B 2005; 109:17708–17714.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:867–891
DOI: 10.1002/fld



MULTICOMPONENT DISSIPATIVE PARTICLE DYNAMICS 891

22. Coveney PV, Novik KE. Computer simulation of domain growth and phase separation in two-dimensional binary
immiscible fluids using dissipative particle dynamics. Physical Review E 1996; 54:5134–5141.

23. Boek ES, Coveney PV, Lekkerkerker HNW, van der Schoot P. Simulating the rheology of dense colloidal
suspensions using dissipative particle dynamics. Physical Review E 1997; 55:3124–3133.

24. Maiti A, Wescott J, Kung P. Nanotube–polymer composites: insights from Flory–Huggins theory and mesoscale
simulations. Molecular Simulation 2005; 31:143–149.

25. Schlijper AG, Hoogerbrugge PJ, Manke CW. Computer simulation of dilute polymer solutions with the dissipative
particle dynamics method. Journal of Rheology 1995; 39:567–579.
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